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Abstract

A novel method for predicting the ultimate steady-state vibration amplitudes from measured transient responses in

multi-input, multi-output flexible rotor/magnetic bearing systems is presented. The technique is based around a multi-level

wavelet coefficient analysis with in-built transient system dynamics. The relation between an input disturbance wavelet

coefficient acting on the system and a measured vibration wavelet coefficient is identified theoretically for non-identical

wavelets. A controller is formulated in the wavelet coefficient domain with control forces derived from proportional

feedback of displacement wavelet coefficients. Improved transient performance is achieved using wavelet coefficient steady-

state prediction to moderate the control signal. Experimental validation of the controller using mass-loss tests

demonstrates the manner in which transient vibration attenuation may be achieved.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Magnetic bearings offer the ability to vary radial rotor force dynamically and are commonly used with a
control strategy to attenuate vibrations levels during operation of rotating machinery. The origin of
disturbance forces may be attributed to normal operating conditions or from a fault. Specific examples of
disturbances include rotor unbalance, base acceleration and aerodynamic excitation.

There exist many methods of evaluating control forces from open- and closed loop strategies. Burrows and
Sahinkaya [1] use open-loop techniques to identify the optimum control forces to minimise steady-state
synchronous vibration. Simulations of sudden variation of rotor unbalance are considered by Shafai et al. [2]
using an adaptive open-loop controller. Knospe et al. [3] present a method of adaptive open-loop updating of
influence coefficients to identify control forces over several cycles. However, open-loop controllers designed to
minimise steady-state vibration may be ineffective during transient vibration periods. Optimally designed
controllers may improve system performance provided they are formulated from an accurate model of the
system. An H1 derived controller was developed by Fujita et al. [4] for an experimental flexible rotor levitated
by active magnetic bearings. Cole et al. [5] designed a controller that is robust to both direct rotor forcing and
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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base motion. Control of transient rotor vibration has been considered using H1 optimisation by Keogh et al.
[6]. Further, m-synthesis has been used to increase the accuracy involved in modelling the plant perturbations
and errors in order to improve closed-loop performance [7]. Optimal model based controllers are, however,
limited by the compromise between high system order and computational efficiency for real-time operation.
In principle, if a controller could provide a perfect control signal at the same time as a change in the input
disturbance then the rotor vibration would be zero. However, high system order limits the speed of response of
the controllers. Synchronous and multi-frequency controllers offer a faster response time, but may provide
inappropriate control forces during transient excitation.

In recent years wavelet analysis has been used to identify features and characteristics within a signal.
Newland [8,9] presents a method of representing a recorded vibratory signal as a time–frequency map using
wavelet analysis, while Staszewski [10] identifies damping characteristics from multi-degree-of-freedom
models. The ridges and skeletons method proposed by Staszewski [11] is used to identify nonlinear systems.
Chancey and Flowers [12] extract transient patterns from measured rotor vibrations. Zou et al. [13] determine
features from a simulated cracked rotor passing through a subcritical speed from the transient response. Cade
et al. [14] identify the onset time for a fault condition in a rotor/magnetic bearing system. Wavelet analysis has
also been used to study fault conditions in rolling element bearings [15] and gearboxes [16]. Although it has
been used extensively for identification, wavelet analysis has had relatively little use in real-time closed loop
control applications. Parvez and Goa [17] use simple proportional wavelet coefficient feedback for specific
bandwidths. However, system delays associated with control signal evaluation can cause instability. More
recently, Cole et al. [18] developed a controller designed to attenuate transient and steady-state vibration using
model-based integral wavelet coefficient feedback in a single measurement plane only.

Wavelet analysis has been demonstrated as a useful tool for understanding the dynamic response of a
variety of systems. In particular, its ability to identify transient behaviour is of significant interest. This paper
focuses on the use of wavelet analysis to identify steady-state characteristics from transient data in order to
influence a control strategy acting in the wavelet coefficient domain. Multiple rotor measurement planes are
also considered, which will generally result in residual vibration that may not be fully attenuated by any
control action. Since the final steady-state amplitudes are predicted during transient periods, the appropriate
control action may be applied at an earlier stage. Experimental data are derived from a rotor/magnetic bearing
system and the effectiveness of the transient control is demonstrated.

2. Wavelet analysis

Wavelet analysis provides a multi-scale representation of the time and frequency components within a
signal. It has many similarities with Fourier analysis, however, it also offers significant advantages. These
include evaluation of frequency components within a time frame without windowing, and practical
implementation using filterbanks and digital signal analysis. The wavelet transform of a signal is evaluated by
integrating the signal with a mother wavelet cðtÞ, where cðtÞ has zero mean and is localised in time. Variation
of the translation and dilation of the mother wavelet allows a multi-scale approach. A more detailed
explanation can be found in Refs. [19,20]. The continuous wavelet coefficients of system state vector, xðtÞ, and
the input disturbance vector, fðtÞ, can be expressed as

x̄ða; tÞ ¼ jaj�1=2
Z 1
�1

xðtÞcx

t� t
a

� �
dt,

f̄ða; tÞ ¼ jaj�1=2
Z 1
�1

fðtÞcf

t� t
a

� �
dt, ð1Þ

where the subscripts x and f indicate that the mother wavelets may be different.
In a discrete system the wavelet coefficients are evaluated on a discrete grid. The system state indices a and t

are assigned regularly spaced values a ¼ mp0, and t ¼ nq0, where m and n are integer values. It is also possible
to evaluate the wavelet coefficients at specific a and t values using filterbanks. This is achieved by splitting the
signal into two parallel channels, filtering one channel with a high-pass filter and the other with a low-pass
filter, and downsampling the signals by a factor of 2. The output from the high-pass filter corresponds to the
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wavelet coefficients. The output from the low-pass filter can be successively filtered by this process to identify
wavelet coefficients at a ¼ 2�a and t ¼ 2�ab. The discrete time polyphase output signal, y0ðkÞ, from a wavelet
filter bank can be expressed as a vector of wavelet coefficients:

y0ðkÞ ¼ ½y1ð2
1kÞ; y2ð2

2kÞ; . . . yJð2
JkÞ; yJ ð2

Jk þ 1Þ�T. (2)

The system and the input disturbance states can be represented in terms of their discrete wavelet coefficients as

xðtÞ ¼ x0 þ
X1
a¼0

X2a�1

b¼0

x̄dða; bÞcxð2
�at� bÞ,

fðtÞ ¼ f0 þ
X1
a¼0

X2a�1

b¼0

f̄dða; bÞcf ð2
�at� bÞ, ð3Þ

where x0 and f0 are the respective average values of xðtÞ and fðtÞ, and x̄dða; bÞ ¼ x̄ð2�a; 2�abÞ and f̄dða; bÞ ¼
f̄ð2�a; 2�abÞ correspond to the discrete wavelet coefficients. In this paper theoretical simulations and
experimental results will consider the Haar wavelet:

cðtÞ ¼

1; 0pto1=2;

�1; 1=2pto1;

0 otherwise:

8><
>: (4)

3. Dynamics in the wavelet coefficient domain

By means of an example, consider a single-input single-output dynamic system undergoing a disturbance.
The dynamic equation of motion is

m €xðtÞ þ c _xðtÞ þ kxðtÞ ¼ f ðtÞ, (5)

where m, c and k correspond to the mass, damping and stiffness coefficients, respectively. In order to examine
the dynamics in the wavelet transform domain, the continuous wavelet transform of the derivative _xðtÞ needs
to be identified. Now

_̄xða; tÞ ¼ jaj�1=2
Z 1
�1

_xðtÞcx

t� t
a

� �
dt (6)

and integration by parts gives

_̄xða; tÞ ¼ �jaj�1=2
Z 1
�1

xðtÞ
q
qt

cx

t� t
a

� �
dt. (7)

Noting that

q
qt

cx

t� t
a

� �
¼ �

q
qt

cx

t� t
a

� �
then Eq. (7) can be rearranged as

_̄xða; tÞ ¼
q
qt

x̄ða; tÞ ¼ x̄0ða; tÞ, (8)

where ð:Þ0 denotes partial differentiation with respect to t. Hence

€̄xða; tÞ ¼
q2

qt2
x̄ða; tÞ ¼ x̄00ða; tÞ. (9)

The continuous wavelet transform of Eq. (5) now yields

mx̄00ða; tÞ þ cx̄0ða; tÞ þ kx̄ða; tÞ ¼ f̄ ða; tÞ. (10)

Suppose now that f ðtÞ ¼ HðtÞ, the Heaviside step function. The question posed is whether the steady-
state response of the system can be extracted by manipulating the wavelet coefficients (Fig. 1). The response of
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Fig. 1. Block diagram showing predictive steady-state configuration.
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the system (5) to an input disturbance can be represented in the Laplace transform domain (with respect
to t) as

X ðsÞ ¼ GðsÞF ðsÞ. (11)

A similar expression can be used to represent the wavelet coefficient dynamics of Eq. (10) in the Laplace
transform domain (with respect to t) as

X̄ ða; sÞ ¼ GðsÞF̄ ða; sÞ, (12)

where the transfer function from input to output for both systems is

GðsÞ ¼
1

ms2 þ csþ k
. (13)

Expanding the system dynamics using wavelet analysis is seen to identify the system dynamics at different
pseudo-frequencies and translations rather than just time, thus allowing transient pseudo-frequencies to be
identified.

The objective is to manipulate the wavelet coefficients present in the system response to produce a desired
output. This is achieved by removing the original system dynamics and replacing them with a dummy system.
In this case the dummy plant is designed to have a faster transient response than the actual system. The
wavelet coefficient dynamics of the dummy plant, Ḡ

ðPrÞ
ða; sÞ, to the input disturbance are set as

X̄
ðPrÞ
ða; sÞ ¼ Ḡ

ðPrÞ
ða; sÞF̄ ða; sÞ, (14)

where the response X̄
ðPrÞ
ða; sÞ is designed to reach a steady state faster than X̄ ða; sÞ. The pertinent transfer

function relation is

X̄
ðPrÞ
ða; sÞ ¼ T̄

ðPrÞ
ða; sÞX̄ ða; sÞ, (15)

where T̄
ðPrÞ
ða; sÞ represents the predictive steady-state transfer function operator. From Eq. (12), F̄ ða; sÞ is

given by

F̄ ða; sÞ ¼ G�1ðsÞX̄ ða; sÞ. (16)

Combining Eq. (16) with Eq. (14) gives

X̄
ðPrÞ
ða; sÞ ¼ Ḡ

ðPrÞ
ða; sÞG�1ðsÞX̄ ða; sÞ. (17)

From Eqs. (15) and (17) the predictive steady-state operator can be identified as

T̄
ðPrÞ
ða; sÞ ¼ Ḡ

ðPrÞ
ða; sÞG�1ðsÞ. (18)

The response of the actual and dummy systems to a disturbance may not yield the same steady-state
amplitude. However, the steady-state responses can be matched using a scaling term GðaÞ, which is evaluated
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from the final value theorem to yield

lim
s!0

sX̄ ða; sÞ ¼ GðaÞ lim
s!0

sX̄
ðPrÞ
ða; sÞ. (19)

Hence Eq. (18) is modified to the form

T̄
ðPrÞ
ða; sÞ ¼ GðaÞḠðPrÞða; sÞG�1ðsÞ. (20)

In practical applications the system plant and prescribed dummy plant may not ensure that T̄
ðPrÞ
ða; sÞ is

realisable. To ensure a realisable transfer function T̄
ðPrÞ
ða; sÞ can further be modified to

T̄
ðPrÞ
ða; sÞ ¼ DðsÞGðaÞḠ

ðPrÞ
ða; sÞG�1ðsÞ. (21)

Here

DðsÞ ¼
1

ð1þ gsÞn
, (22)

where g is sufficiently small to ensure that low-frequency response remains the same, but that the high-
frequency response of the system is reduced. The integer n must be sufficiently large to ensure that the system
is realisable.

To demonstrate this technique consider a simple single-degree-of-freedom system with m ¼ 0:1, c ¼ 0:1 and
k ¼ 10 undergoing a step disturbance. The wavelet steady-state predictor is configured to cover a pseudo-
frequency range from 1� to 10� the natural frequency of the system, on ¼

ffiffiffiffiffiffiffiffiffi
k=m

p
. The Haar wavelet is used

to evaluate the wavelet coefficients and is specified in Eq. (4). To evaluate the predictive steady-state transfer
function the dummy plant, Ḡ

ðPrÞ
ða; sÞ, must be specified. Define

Ḡ
ðPrÞ
ða; sÞ ¼

o2
PrðaÞ

s2 þ 2zPrðaÞoPrðaÞsþ o2
PrðaÞ

, (23)

where oPrðaÞ and zPrðaÞ dictate the natural frequency and damping ratio of the dummy system at dilation a.
The natural frequencies and damping ratios of the individual plants are specified in Table 1. Evaluating the
steady-state amplitudes at each dilation, due to a step input disturbance gives

GðaÞ ¼
1

k
. (24)

The full expression for the predictive steady-state wavelet coefficient operator evaluated using Eq. (21) is

T̄
ðPrÞ
ða; sÞ ¼

mo2
PrðaÞs

2 þ co2
PrðaÞsþ o2

PrðaÞk

ks2 þ 2koPrðaÞzðaÞsþ ko2
PrðaÞ

, (25)

where the predictive steady-state transfer function, Ḡ
ðPrÞ
ða; sÞ, is characterised by the natural frequency,

oPrðaÞ ¼ 10on, and damping ratio, zPrðaÞ ¼ 1. This defines a critically damped system capable of responding
to higher frequency components present in the disturbance. Fig. 2 shows the system response and the
predictive steady state. The corresponding wavelet coefficients are also presented in Fig. 3. The predictive
steady state is seen to have a reduced transient settling time. There is a delay associated with the steady-state
prediction arising from the evaluation of the wavelet coefficients and the predictive signal reconstruction.
Table 1

Individual system characteristics

Plant Natural frequency Damping ratio

System dynamics GðsÞ on z ¼ c=2mon

Dummy system wavelet dynamics Ḡ
ðPrÞ
ða; sÞ oPrðaÞ zPrðaÞ
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Fig. 2. Direct (dashed line) and predictive steady-state (solid line) simulated system response.
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Fig. 3. Direct (dashed line) and predictive steady-state (solid line) wavelet coefficients present in simulated system response.
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4. Wavelet steady-state prediction

An example single-input single-output system has been used to demonstrate a method for predicting the
steady-state response of a linear system from transient data. The single-input single-output linear system
approach can be extended to consider a multi-input multi-output formulation. The system wavelet coefficient
and dummy wavelet coefficient plant dynamics (Eqs. (11), (12) and (14)) can be represented as the generalised
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multi-input multi-output linear systems

XðsÞ ¼ GðsÞFðsÞ,

X̄ða; sÞ ¼ Ḡða; sÞF̄ða; sÞ,

X̄
ðPrÞ
ða; sÞ ¼ Ḡ

ðPrÞ
ða; sÞF̄ða; sÞ, ð26Þ

where the wavelet system transfer function, Ḡða; sÞ, is now dependent on the pseudo-frequency, a. This allows
nonlinear variations with a to be included.

The predictive steady-state operator specified in Eq. (20) becomes the multi-input multi-output transfer
function

T̄
ðPrÞ
ða; sÞ ¼ GðaÞḠ

ðPrÞ
ða; sÞḠ

�
ða; sÞ, (27)

where Ḡ
�
ða; sÞ is the pseudo-inverse of Ḡða; sÞ satisfying Ḡ

�
ða; sÞḠða; sÞ ¼ I and GðaÞ is identified from

lim
s!0

sX̄ða; sÞ ¼ GðaÞ lim
s!0

sX̄
ðPrÞ
ða; sÞ. (28)

For practical use T̄
ðPrÞ
ða; sÞ is required to be fully realisable. This can be ensured by modifying the transfer

function as

T̄
ðPrÞ
ða; sÞ ¼ DðsÞGðaÞḠ

ðPrÞ
ða; sÞḠ

�
ða; sÞ, (29)

where

DðsÞ ¼
1

ð1þ gsÞn
I, (30)

where g and n have already been described. This forms the basis for a method predicting the steady-state
vibration response of a multi-input multi-output system.
5. Discrete rotor dynamics

A continuous time approach may be undertaken to identify the relationships between the following
variables:

fðtÞ ! FðsÞ,

xðtÞ ! XðsÞ,

f̄ða; tÞ ! F̄ða; sÞ,

x̄ða; tÞ ! X̄ða; sÞ, ð31Þ

where the response of a generalised linear system can be evaluated from superposing 2N individual modal
contributions:

XðsÞ ¼
X2N

l¼1

1

s� ll

GlFðsÞ. (32)

For practical applications a filterbank approach will be used. The system response and disturbance can be
represented in discrete time (t! kT and t! 2�ab). The discrete sequences ffd ðkTÞ : k ¼ 0; 1; 2; . . .g,
fxdðkTÞ : k ¼ 0; 1; 2; . . .g, ff̄dða; bÞ : b ¼ 0; 1; 2; . . .g and fx̄dðp; qÞ : b ¼ 0; 1; 2; . . .g may be represented by the
Z-transforms Fd ðzÞ, XdðzÞ, F̄dðz; aÞ and X̄d ðz; pÞ, respectively. Here the subscript d signifies variables defined in
discrete time. The associated transfer functions are shown in the Appendix.
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6. Wavelet coefficient predictive steady-state control moderation

Wavelet decomposition allows for the identification of wavelet coefficients corresponding to specific
frequency bandwidths present in the measured rotor vibration. Conversely, wavelet reconstruction can be used
to create control signals from wavelet coefficients acting to suppress amplitudes over a specified vibration
bandwidth. Applying a control strategy in the wavelet coefficient domain allows for loop shaping of the
wavelet coefficients. This provides a method of control targeting specific components within the measured
signal. A proportional controller is proposed to provide control action in the wavelet coefficient domain,
acting on a specific wavelet coefficient. To overcome control instabilities during transient excitation, and to
assess improvements in controller performance, steady-state prediction will be used to moderate the control
signal. The control force can be evaluated in the wavelet coefficient Z-transform domain as Ūðp; zÞ ¼
�L̄ðp; zÞX̄dðp; zÞ where L̄ðp; zÞ ¼ kðpÞ defines a proportional control action. The closed loop response of the
system incorporating negative feedback can now be identified as

ðI� Ḡða; p; zÞBuL̄ðp; zÞÞX̄dðp; zÞ ¼ Ḡ0ða; zÞf0 �
X1
a¼0

Ḡða; p; zÞF̄dða; zÞ, (33)

where Bu is a distribution matrix matching the output states to the control force. Ḡ0ða; zÞ is the transfer
function relating a constant input disturbance over a fixed time period to the measured rotor displacement.
Ḡða; p; zÞ relates wavelet coefficients present in the input disturbance to the wavelet coefficients in the rotor
vibration. In the case of the proportional predictive steady-state controller the wavelet control coefficients will
take the form Ūðp; zÞ ¼ �L̄ðp; zÞT̄

ðPrÞ
ðp; zÞX̄dðp; zÞ, where T̄

ðPrÞ
ðp; zÞ is the discrete time predictive steady-state

transfer function. Therefore, with steady-state prediction equation (33) becomes

ðI� Ḡða; p; zÞBuL̄ðp; zÞT̄
ðPrÞ
ðp; zÞÞX̄dðp; zÞ ¼ Ḡ0ða; zÞf0 �

X1
a¼0

Ḡða; p; zÞF̄dða; zÞ. (34)

In practice, implementation of a wavelet coefficient domain controller will result in evaluation delays between
the disturbance measurement and control force. Incorporating delays modifies the controller transfer function
to L̄ðp; zÞ ¼ kðpÞIz�i, where i is the number of cycles over which the control signal is evaluated. This can also
be used to incorporate any delays associated with the evaluation of the predicted steady-state vibration. The
closed loop system response with controller evaluation delays can be expressed as

ðI� Ḡða; p; zÞBukðpÞz�iT̄
ðPrÞ
ðp; zÞÞX̄dðp; zÞ ¼ Ḡ0ða; zÞf0 �

X1
a¼0

Ḡða; p; zÞF̄d ða; zÞ. (35)

7. Experimental validation

7.1. Experimental facility

An experimental flexible rotor/active magnetic bearing facility (Fig. 4) was used to validate the predictive
steady-state detection strategy. The rotor was 2m long, 50mm in diameter, and 60 kg in mass. Four 10 kg
disks were located along the rotor to reduce the natural frequencies of the first two bending modes to below
the maximum operating speed of the motor, 6000 rev/min. Radial forces were applied through two active
magnetic bearings, each constructed from eight poles forming two orthogonal opposing coil pairs. These were
positioned at �45� to the vertical to maximise static load. The maximum radial force exerted by a single
magnetic bearing was 1700N before roll-off at 100Hz. Rotor displacement relative to base motion was
measured using eight eddy-current sensors, formed into four orthogonal pairs. The four sensor planes were
positioned at the rotor ends and adjacent to the active magnetic bearings. Sensor feedback from the central
measurement planes was used in conjunction with a local proportional–integral–derivative (PID) control
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strategy to allow stable levitation of the rotor. The rotor modes of vibration are 10Hz (near rigid body
conical whirl), 19Hz (near rigid cylindrical body whirl), 28Hz (dominant first-order bending) and 67Hz
(dominant second-order bending). The corresponding damping ratios are 0.20, 0.13, 0.085, and 0.085,
respectively.

The modal matrix Gl specified in Eq. (32) relates a disturbance force vector F of dimension nf to a rotor
displacement vector X of dimension nx. In principle, Gl could be derived from dynamic equations,
for example, based on finite element methods. However, the control action specified in the left-hand side
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Fig. 5. Measured and predictive steady-state mass-loss responses in the x-axis at the non-driven end disk ðx7Þ and non-driven end active

magnetic bearing ðx5Þ at a rotational speed of 15Hz. (a,b) show the measured response, (c,d) show the predictive steady-state response.

Fig. 4. Schematic diagram of an experimental flexible rotor supported by two active magnetic bearings.
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of Eq. (33) involves the matrix GlBu. The matrix Bu extracts the columns of Gl that are relevant only to the
control force vector (of dimension 4 for the experimental system). The relevant columns of Gl may
therefore be obtained through online signal processing and identification based on known inputs applied
through magnetic bearings and measured rotor displacement signals. This was the approach adopted in this
paper.
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Fig. 6. Measured direct (dashed line) and predictive steady-state (solid line) wavelet coefficient responses in the x-axis at the non-driven

end ðx7Þ disk and non-driven end active magnetic bearing ðx5Þ corresponding to 1� (a,b), 2� (c,d) and 4� (e,f) the rotational speed.
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7.2. Experimental procedure and results

Experimental validation of the wavelet coefficient predictive steady state and control strategy was
performed using mass-loss tests at a rotational speed of 15Hz. These were used to induce step changes in rotor
unbalance from an initially indeterminate state. Mass-loss was induced by cutting free an attached mass at the
non-driven end disk using a blade mechanism. The effective mass loss eccentricity was 196 gcm. The steady-
state predictor was configured with three wavelet coefficient levels and pseudo-frequencies corresponding to
1�, 2� and 4� the rotational speed of the rotor. The Haar wavelet was used to evaluate the wavelet
coefficients and is specified in Eq. (4). The filterbank sampling time was specified as T ¼ 1=ð2iOÞ, where i

indicates the wavelet pseudo-frequency level relative to the synchronous frequency, O. The inverse transfer
function used with predictive steady state was identified from on-line measurement and truncated after 5 time
steps to allow for efficient real-time implementation. The decomposition filterbank residue was set to zero.
This removes any constant component from the signal. Therefore, predictive steady-state signal processing
identifies the steady-state vibrational amplitude of the system to a step change in the synchronous harmonic
disturbance only. The response of the rotor due to mass-loss at 15Hz is shown in Fig. 5 along with the
predictive steady-state response. The measured direct and predictive wavelet coefficient values corresponding
to 1�, 2� and 4� the rotational frequency are presented in Fig. 6.
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Fig. 7. Measured mass-loss response (a,c) in the x-axis at a rotational speed of 15Hz using proportional wavelet controller C1. Wavelet

coefficients corresponding to 1� the rotational frequency with controller C1 (solid) and basic PID controlled (dashed) cases (b,d).
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Two wavelet coefficient controllers were implemented:
(C1)
Fig. 8.

15Hz;
With proportional wavelet coefficient feedback.

(C2)
 With proportional wavelet coefficient feedback moderated using predictive steady-state wavelet

coefficients.
To minimise the number of variables and allow direct comparison, both controllers were configured using a
single wavelet coefficient level. The wavelet controller evaluation time corresponded to a 3 cycle delay.
Controller stability was assessed using an acceptability bound on performance. A controller was defined as
unacceptable if the rotor displacement exceeded a specified limit, 0.5mm, in any control plane. The acceptable
upper limits of the proportional gains were k1;1 ¼ 0:41 and k1;1 ¼ 0:68 for controllers (C1) and (C2),
respectively. To assess controller performance a wavelet coefficient feedback gain corresponding to 50% of the
maximum acceptable limit was used. The rotor displacement and corresponding wavelet coefficients in the x-
axis for the uncontrolled case have already been presented in Figs. 5 and 6. Figs. 7 and 9 show the rotor
displacement in the x-axis for using the proportional wavelet coefficient controller (C1) and the proportional
wavelet controller with predictive steady-state moderation (C2). The corresponding control forces are
presented in Figs. 8 and 10. Mass-loss experiments show that both controllers suppress rotor vibration. In the
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(a) and (c) show the total control forces at non-driven end and non-driven end active magnetic bearings at a rotational speed of

(b) and (d) show the wavelet coefficients used to form the control force.
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Fig. 9. Measured mass-loss response (a,c) in the x-axis at a rotational speed of 15Hz using wavelet controller C2. Wavelet coefficients

corresponding to 1� the rotational frequency with controller C2 (solid) and basic PID controlled (dashed) cases (b,d).
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case of direct wavelet coefficient feedback the lower stability boundary results in a conservative control
strategy. Moderating the controller input using predictive steady-state measurements increases the stability
boundary allowing for improved system performance. Predictive steady-state moderation is therefore seen as
an improvement to the control of the system allowing for better control action when transient vibration occurs
[Figs. 7–10].

8. Conclusions

A method of identifying the steady-state vibration of a generalised linear system using wavelet coefficients
has been presented. Experimental validation of the technique was performed using a flexible rotor/active
magnetic bearing assembly. Mass-loss tests were used to provide sudden changes in the synchronous
disturbance resulting in responses containing transient vibration. Results indicate that this method provides
an accurate estimation of the steady-state response during the transient phase. In a discrete time approach the
disturbance can be represented as a summation of appropriate step changes. Therefore it follows that the
predictive steady-state method can be applied to consider any system disturbance.

A simple proportional wavelet coefficient controller was introduced as a means of targeting specific rotor
vibration. A second controller was identified using predictive steady-state techniques to moderate the wavelet
coefficient. Experimental validation of the controllers was performed using mass-loss tests. Both controllers
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Fig. 10. (a) and (c) show the total control forces at non-driven end and non-driven end active magnetic bearings at a rotational speed of

15Hz; (b) and (d) show the wavelet coefficients used to form the control force.
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reduced rotor vibration. However, the controller incorporating predictive steady-state vibration improved
closed loop stability allowing for improved performance during transient vibration.
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Appendix A. Wavelet coefficients relation between rotor vibration and input disturbance

The Laplace transform of the input disturbance, fðtÞ, can be expressed in terms of the wavelet coefficient
series as

FðsÞ ¼

Z 1
0

f0 þ
X1
a¼0

X2a�1

b¼0

fdða; bÞcð2�at� bÞ

" #
e�st dt. (A.1)

Define

e1ðsÞ ¼
1

s
(A.2)
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and

e2ðs; a; bÞ ¼

Z 1
0

cð2�at� bÞe�st dt, (A.3)

e1ðsÞ relates to the Laplace transform of the average input disturbance, f0. e2ðs; a; bÞ represents the Laplace
transform of the mother wavelet at a specific translation and dilation. The Laplace transform of the input
disturbance can then be simplified to

FðsÞ ¼ f0e1ðsÞ þ
X1
a¼0

X2a�1

b¼0

f̄d ða; bÞe2ðs; a; bÞ. (A.4)

The response of the system can be evaluated by superposing the individual modal contributions. From
Eq. (32), the Laplace transform of the system states can be evaluated in terms of the input disturbance wavelet
coefficients as

XðsÞ ¼
X2N

l¼1

Gl

s� ll

f0e1ðsÞ þ
X1
a¼0

X2a�1

b¼0

f̄dða; bÞe2ðs; a; bÞ

" #
. (A.5)

Poles exist at s ¼ 0 and s ¼ ll . Therefore, the inverse Laplace transform gives the dynamic system response in
the form

xðtÞ ¼
X2N

l¼1

Gl f0u1ðt; llÞ þ
X1
a¼0

X2a�1

b¼0

f̄d ða; bÞu2ðt; ll ; a; bÞ

" #
, (A.6)

where

u1ðt; llÞ ¼L�1
e1ðsÞ

ðs� llÞ

� �
¼L�1

1

sðs� llÞ

� �
¼

1

ll

ð1� ell tÞ,

u2ðt; ll ; a; bÞ ¼L�1
1

s� ll

e2ðs; a; bÞ

� �
. ðA:7Þ

Here L�1½:� indicates the inverse Laplace transform. The relation between the wavelet coefficients of the input
disturbance and the system states can be realised from the wavelet transform of xðtÞ. Define

g1ðll ; p; qÞ ¼ j2
�pj�1=2

Z 1
�1

u1ðt; llÞcð2�pt� qÞdt,

g2ðll ; a; b; p; qÞ ¼ j2
�pj�1=2

Z 1
�1

u2ðt; ll ; a; bÞcð2�pt� qÞdt. ðA:8Þ

Eq. (A.6) can be transformed into the wavelet coefficient domain as:

x̄dðp; qÞ ¼
X2N

l¼1

Gl f0g1ðll ; p; qÞ þ
X1
a¼0

X2a�1

b¼0

f̄d ða; bÞg2ðll ; a; b; p; qÞ

" #
. (A.9)

The summation term, over disturbance time index b, in Eq. (A.9) represents the convolution of the system
dynamics with the disturbance wavelet coefficient. The discrete sequences fx̄dðp; qÞ : q ¼ 0; 1; 2; . . .g,
ff̄d ða; bÞ : b ¼ 0; 1; 2; . . .g, fg1ðll ; p; qÞ : q ¼ 0; 1; 2; . . .g, and fg2ðll ; a; b; p; qÞ : q ¼ 0; 1; 2; . . .g may be represented
by Z-transforms X̄dðp; zÞ, F̄dða; zÞ, G1ðll ; p; zÞ and G2ðll ; a; p; zÞ, respectively. The relation between the input
disturbance wavelet coefficients and the system states wavelet coefficients can now be expressed as

X̄dðp; zÞ ¼ Ḡ0ðp; zÞf0 �
X1
a¼0

Ḡða; p; zÞF̄dða; zÞ, (A.10)
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where

Ḡ0ðp; zÞ ¼
X2N

l¼1

GlG1ðll ; p; zÞ,

Ḡða; p; zÞ ¼
X2N

l¼1

GlG2ðll ; a; p; zÞ. ðA:11Þ
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